Here is a clock that will look great in any room in the house and it never needs a plug! This Water Clock is powered by ordinary tap water. Never needs batteries or electricity. Just fill this Water clock with water and you are on your way to more eco-friendly home. After about 6 months to a year you may need to dump the water out (your can pour it into a plant) and refill. The clock will remember the time as you do so. It even has an alarm. Great for traveling as well. Why would you ever use...

Although the mechanisms they use vary, all oscillating clocks, mechanical, digital and atomic, work similarly and can be divided into analogous parts.[64][65][66] They consist of an object that repeats the same motion over and over again, an oscillator, with a precisely constant time interval between each repetition, or 'beat'. Attached to the oscillator is a controller device, which sustains the oscillator's motion by replacing the energy it loses to friction, and converts its oscillations into a series of pulses. The pulses are then counted by some type of counter, and the number of counts is converted into convenient units, usually seconds, minutes, hours, etc. Finally some kind of indicator displays the result in human readable form.


The timekeeping part of all weight-driven clocks, including large tower clocks, is substantially the same. The figure shows the mechanism of a simple weight-driven timepiece with a pendulum. The frame is made up of two plates that carry the pivots of the various wheels and other moving parts and that are united and spaced by four pillars. The driving weight hangs from a line coiled around a barrel or sprocket, which is raised by turning the winding square or, in some cases, by pulling on the line. The main wheel engages with the centre pinion, on the arbor (axle) of which is also mounted the centre wheel. The front pivot of this wheel and pinion is lengthened to the right of the illustration; it carries the minute hand and part of the gearing necessary to drive the hour hand.
In mechanical clocks, the power source is typically either a weight suspended from a cord or chain wrapped around a pulley, sprocket or drum; or a spiral spring called a mainspring. Mechanical clocks must be wound periodically, usually by turning a knob or key or by pulling on the free end of the chain, to store energy in the weight or spring to keep the clock running.
In the 13th century, Al-Jazari, an engineer from Mesopotamia (lived 1136–1206) who worked for Artuqid king of Diyar-Bakr, Nasir al-Din, made numerous clocks of all shapes and sizes. A book on his work described 50 mechanical devices in 6 categories, including water clocks. The most reputed clocks included the Elephant, Scribe and Castle clocks, all of which have been successfully reconstructed. As well as telling the time, these grand clocks were symbols of status, grandeur and wealth of the Urtuq State.[citation needed]
In 1675, Huygens and Robert Hooke invented the spiral balance spring, or the hairspring, designed to control the oscillating speed of the balance wheel. This crucial advance finally made accurate pocket watches possible. The great English clockmaker, Thomas Tompion, was one of the first to use this mechanism successfully in his pocket watches, and he adopted the minute hand which, after a variety of designs were trialled, eventually stabilised into the modern-day configuration.[40] The rack and snail striking mechanism for striking clocks, was introduced during the 17th century and had distinct advantages over the 'countwheel' (or 'locking plate') mechanism. During the 20th century there was a common misconception that Edward Barlow invented rack and snail striking. In fact, his invention was connected with a repeating mechanism employing the rack and snail.[41] The repeating clock, that chimes the number of hours (or even minutes) was invented by either Quare or Barlow in 1676. George Graham invented the deadbeat escapement for clocks in 1720.
These mechanical clocks were intended for two main purposes: for signalling and notification (e.g. the timing of services and public events), and for modeling the solar system. The former purpose is administrative, the latter arises naturally given the scholarly interests in astronomy, science, astrology, and how these subjects integrated with the religious philosophy of the time. The astrolabe was used both by astronomers and astrologers, and it was natural to apply a clockwork drive to the rotating plate to produce a working model of the solar system.

In mechanical clocks, the power source is typically either a weight suspended from a cord or chain wrapped around a pulley, sprocket or drum; or a spiral spring called a mainspring. Mechanical clocks must be wound periodically, usually by turning a knob or key or by pulling on the free end of the chain, to store energy in the weight or spring to keep the clock running.


“This little beauty works great. I bought it when the alarm on my mobile phone began to intermittently fail me. This little travel clock is beautiful in retro seafoam green and great for travel because its bright color ensures that you will never miss picking it up from your hotel nightstand at checkout. There is a faint, pleasant ticking, the hands glow in the dark, and the nightlight button is bright when needed. The pop-up alarm button is firm and works well though I am learning not to accidentally press it and turn the alarm off when picking up the clock. Overall, a fantastic alarm clock.”
×